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Abstract. A general theory for studying discrete integrable systems is developed based on 
a trace identity that we previously proposed. A scheme for generating hierarchies of discrete 
integrable systems is presented. Under broad assumptions the resulting hierarchies are 
shown to consist of Liouville integrable Hamiltonian systems. 

1. Introduction 

The theory of continuous integrable systems has been extensively and actively 
developed in the past twenty years. As compared with the continuous case, the study 
of discrete integrable systems (see e.g. [ 1-41 and references therein) has received 
relatively less attention. 

In a recent paper [l], Ragnisco and Santini developed a unified algebraic approach 
to discrete integrable equations. They studied the discrete spectral problem 

E$ = ( Q  + AA)$ ( 1 . 1 )  

where E is a translation operator defined on a suitable function space, Q is the field 
matrix, A is a constant invertible matrix, A is the spectral parameter. By using the 
theory of bi-Hamiltonian systems [ 5,6], they succeeded in establishing the Hamiltonian 
structure of the hierarchy of nonlinear evolution equations connected to the above 
spectral problem ( 1 . 1 ) .  

In another recent paper [2], Schilling proposed a systematic approach to the soliton 
equations connected with the discrete Ablowitz-Ladik spectral problem 

p ( n ) f ( n + l ) = ( E , + q ( n ) ) f ( n ) + r ( n ) f ( n - l )  
where p (  n), q ( n )  and r (  n) are 2 x 2 matrices, E, = diag(z, z - I ) ,  and z is the spectral 
parameter. 

In a monograph [7] Kupershmidt developed a theory of discrete formal variational 
calculus and studied the discrete integrable systems that are connected to the Lax 
equation 

( E P + U ~ E ~ - ' + . . . + U ~ ) ~ = A Y  (1.2) 
where u l ,  . . . , up are scalar field elements. 

problem: 
All of the above three spectral problems are special cases of the following general 

E$= U$ (1.3) 

0305-4470/90/ 173903 + 20$03.50 @ 1990 IOP Publishing Ltd 3903 



3904 Tu Gui-zhang 

where U = U(u,  A )  is an N x N matrix depending on the field vector U = (U,, . . . , 
and the spectral parameter A. 

One incredible advantage, among others, of the beautiful theory of bi-Hamiltonian 
systems lies in the fact that the theory can be developed independently without invoking 
spectral problems. However, the calculation required to verify some coupling condi- 
tions is usually very lengthy. The aim of the present paper is to show that the trace 
identity that we proposed in [8,9] applies equally well to the discrete case (1.3). By 
making use of the trace identity, both the hierarchy of equations and the Hamiltonians 
can be simultaneously derived from a single equation. This method, which makes use 
of the spectral problem, needs less calculation and can be applied to the systems that 
are not bi-Hamiltonian. We also propose a scheme for generating the discrete integrable 
systems connected to (1.3), and establish the Liouville integrability of the resulting 
Hamiltonian systems. 

The paper divides into seven sections. The next section contains a brief presentation 
on discrete Hamiltonian systems. Then section 3 proposes a scheme for generating 
discrete integrable systems. As an illustrative example of the general scheme, we 
establish in section 4 the Hamiltonian structure of the famous Toda lattice hierarchy. 
The main theorems regarding a trace identity and a general formula for Poisson brackets 
are presented, respectively, in section 5 and section 6. Section 7 presents a technique 
for proving the locality of discrete integrable systems. 

2. Discrete Hamiltonian systems 

This section contain a brief presentation on discrete Hamiltonian systems. The reader 
is referred to [7] (chapters 2 and 3) for full details. 

be a vector with the components ui = u i ( n ,  t )  depending on 
integers n E Z and t E R. We define the translation and difference operators by 

Throughout this paper we write f ' k '  = EkJ: 

that f =  D h  then we could write f- 0 (mod D ) ,  i.e. 

Let U = (u1, .  . . , 

(Ef)(n) = f ( n  + 1)  (DfNn) = f ( n +  1) -f(n) = ( E  - l ) f ( n ) .  (2.1) 

For a given (scalar or vector) functionf=f(n),  if we could find a function h such 

f-0 (mod D ) @ 3 h  such that f = Dh. 
In this case we say that f is equivalent to zero. When no confusion would arise we 
simply write f - 0 to mean f- 0 (mod D ) .  If the difference of two functions f and g 
is equivalent to zero, then we write f - g, i.e. 

f- g a f -  g - 0. 
For example 

since f(') -f = of- 0. 
f-f"' (2.2) 

For a scalar funct ionf=f(u) ,  its gradient (Vf)(u)  is defined in the usual way by 

(d/d&)f(u+&V)I,=o= 07.6 U )  (2.3) 
where U = (U,, , . .  , Vf= ( ( V f ) , ,  . . . , ( V f ) p ) ,  and 

(.L g)= c f: A(n)gi(n). 
n E E  i = l  



Trace identity and discrete integrable systems 3905 

It is easy to see that the ith component ( V f  ) [  is given by 

We call Sf / Sui the discrete variational derivatives. It is known that [7] 

(S /  SU,)D = 0. ( 2 . 5 ~ )  

In particular, we have 

( S / 6 U i )  f ( l ) =  ( 6 / 6 u , ) J :  (2 .5b )  

A linear operator J,  mapping the space of p-vectors into itself, is called a 
Hamiltonian operator if for any two scalar functions f and g the expression 

In this case we call the evolution equation 

JSH(u)  
U, =- 

6U 
(2.7) 

a discrete Hamiltonian system and call the scalar function H (  U )  the Hamiltonian. 
This system is called Liouville integrable if there exist an infinite number of conserved 
quantities H n ,  n = 0, 1,2, . . . such that they are involution in pairs, i.e. 

= 0 (2.8) 

{Hn, H m l = O *  (2.9) 

(Hn),={Hm, Hn)=O* 

Usually we take H = H% for some no€  Z, then (2.8) is a consequence of (2.9): 

One of the central concerns in the theory of discrete Hamiltonian systems is to generate 
as many Liouville integrable discrete Hamiltonian systems as possible. An effective 
way to do it is to make use of discrete spectral problems, which we shall do in the 
next section. 

3. A scheme for generating discrete integrable systems 

Throughout this paper we shall consider the following discrete spectral problem: 

E$ = U+ (3.1) 

where 4 = (4,  , . . . , i,bN)T is an N-vector and U = U (  U, r, A )  is an N x N matrix depend- 
ing on a field vector U = (U,, . . . , the time variable t ,  and a spectral parameter A. 
We call (3.1) an isospectral problem if A,  = 0. 

As in the continuous case, we shall combine equation (3.1) with its t-evolution part 

* 1 =  v* (3.2) 
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for some matrix f! The compatibility condition between (3.1) and (3.2) gives a 
differential-diff erence equation 

U , = ( E Q ) U -  U Q  (3 .3)  

which will be called a discrete zero-curvature equation. Here the term 'discrete 
zero-curvature equation' will remind us of the counterpart 'zero-curvature equation' 
in the continuous case 

U, = Qy - [ U, Q] 

+x = w. 
which is the compatability between (3.2) and 

The aim of the present paper is to show that for a properly chosen isospectral 
problem (3 .1)  we can relate it to a hierarchy of equations 

$ 1  = V(n,fl 

U" = (EV,,,) U - uv,,, 
such that the corresponding discrete zero-curvature equations 

(3 .4)  

are Liouville integrable. To be more precise, we shall show that there exists a common 
set of conserved quantities {H,} such that (3 .4)  are equivalent to their Hamiltonian 
forms 

J6 H ,  
UI,? = - 6U 

and the Hamiltonians {H,}  are in involution in pairs 

{el, Htn) = 0. 

Let G be a finite-dimensional Lie algebra over @, and let 6 be the corresponding 
loop algebra 

6 = GO C(A, A - I )  

where C(A, A - ' )  is the set of Laurent polynomials in A. Throughout this paper we 
consider the isospectral problem (3.1) with the matrix 

U = e,  + u el + . . . + upep (3 .5)  

where U ,  = u,(n ,  t ) ,  i = 1, .  . . , p ,  are field variables depending on n E Z (the set of 
integers) and t E R, and e, = e,(A) E G, i = 0,1, . . . , p .  

The aim of the present paper is to propose a general scheme for generating 
hierarchies of discrete Hamiltonian systems which are Liouville integrable. Starting 
from a properly chosen isospectral problem (3.1) with U being of the form (3 .5) ,  we 
search for a sequence of auxiliary problems 

$1 = V,n,lCI 

urn = (EV,, ,)  U - uv,,, 
such that the corresponding discrete zero-curvature equations 

represent a hierarchy of Liouville integrable Hamiltonian systems. 
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The scheme consists of four main steps. First we solve for r from the following 
equation: 

(E r )  u - ur = 0. (3.6) 

We observe that the above equation can be obtained from (3.3) by assuming U, = 0. 
As in the continuous case, we call the above equation the stationary zero-curvature 
equation. By substituting the expansion 

r =  r i r i  
i 3 0  

into (3.6) we obtain a recurrence relation among the Ti from which we could calculate 
Ti recurrently. 

Second, we take the positive part ( A T ) +  of A"T. The positive part f+ and the 
negative part f- of a function f = X i  A A  are defined by 

where 7~ is a fixed integer. Usually we take 7~ = 0, in this case we have 

Then we check if the expression 

( E  ( A  " r)+) U - U(A T)+ 

is compatible with U,, i.e. we check if the condition 

is satisfied. If the above condition holds then we obtain the following hierarchy of 
equations: 

U," = (EV'" ' )  U - UV'"' (3.8) 
where V ( " )  = ( A  " V ) ,  . If the condition (3.7) does not hold then we try to find a sequence 
of modification matrices A,, such that for 

v(") = ( A  v)+ + A" 

we have 

( E V ' " ' ) U - U ( V ' " ' ) =  € A " €  f C e , .  
i = l  i =  I 

Once we find such a sequence of matrices A,,, the corresponding hierarchy of equations 
will be given by (3.8), or equivalently by 

utn = Kn(u) (3.9) 

where K n ( u ) = ( f l n ( u ) ,  * * * 

The third step is to rewrite equation (3.9) in its Hamiltonian form 

J6 H ,  
uf,f =- 

SU 
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for a sequence of Hamiltonians {H,,}. To do so we have to apply the following trace 
identity: 

(3.10) 

where 

(A, B )  = Tr(AB) 

denotes the trace of the product of matrices A and B, and y is a constant to be fixed 
each time; V is defined in terms of r: 

r = vu. (3.11) 

The proof of this trace identity will be given in section 5 .  After using this identity we 
obtain a sequence of variational relations 

In most cases we are able to find a Hamiltonian operator J which maps P,, to K,: 

K , ( u )  = J P , ( u ) .  

Then the above hierarchy of equations (3.9) takes its Hamiltonian form 

SHfl 
U," = J-. 

6 U  

The final step is to show the involutive property represented by equation (2.9). This 
can be done by using a general formula on Poisson brackets: 

(3.12) 

where k is an integer determined by the Hamiltonian operator J, 

H ( A ) =  H J - "  
,,a0 

and 

The proof of the above formula for Poisson brackets will be given in section 6 .  

Remark 1 .  The proof of the trace identity makes use of the notion of 'rank' as used 
in the continuous case [lo]. The rank is an integer-valued function which is defined 
on U, A, e E G and E such that 

d a b )  = p ( a ) + p ( b )  

when ab makes sense, where p ( a )  represents the rank of a. For example, if we have 
defined p ( u l )  and p(e l )  then 

p(u1e1) = p ( u , ) + p ( e , ) .  
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There is a difference between discrete and continuous cases. In the continuous case 
the stationary zero-curvature equation is 

vx = U, VI 
it contains a commutator; while in the discrete case the corresponding stationary 
zero-curvature equation is (3.6), which does not contain a commutator. Thus we could 
relax somewhat the condition on ranks by not insisting on the condition p ( [ e , f ] )  = 
p ( e ) + p ( f )  for e, f e G .  We shall define the rank of ei and ui in such a way that 
U = eo+ U, e, +. . . + upep is homogeneous, i.e. each term is of the same rank: 

d e o )  = p ( u l e d  =. . . = dupep)  
or equivalently 

p ( u i )  = d e o )  -p(ei)  i = 1, . . . , p ,  

As distinct from the continuous case, where p(d /dx )  could be non-zero, in the discrete 
case we see from the equation (3.6) that we always have to define 

p ( E )  = 0 

in order to keep equations homogeneous in ranks. Next, from the spectral problem 
(3.1) we see that 

p(U)=O.  

It remains an open problem as how to introduce the rank in a systematic way as 
done in the continuous case [lo]. However, once we have succeeded in defining the 
rank we are able to use the trace identity. 

The above picture will be more clear in the next section when we follow the above 
procedure to deal with a known Toda lattice hierarchy. 

Remark 2. The matrix V ,  defined by (3.11), was first introduced by Ragnisco and 
Santini [ 11. As they pointed out, the matrix V possesses the gradient property which 
is needed for constructing the desired Hamiltonian. From (3.6) we see that the equation 
for V is given by 

( E V ) ( E U ) -  uv=o. (3.13) 

In fact we have 

( E V ) ( E U )  U = ( E (  V U ) )  U 

= (Er) U using (3.11) 

= ur using (3.6) 

= ( U V ) U  
from which we reduce (3.13) in the case that U is invertible, which we shall assume 
from now on. 

From (3.11) and (3.13) we see that 

m = D( vu) 
= E (  V U )  - VU 

= uv- vu 
= [U,  VI .  
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Thus 
m = [ u ,  VI (3.14) 

from which we deduce that D(Tr r) = 0. In other words, the trace of r is independent 
of the lattice variable n, therefore without losing generality we may assume that 

Tr(T) = 0. (3.15) 

4. The Toda hierarchy 

As an illustrative example, we now apply the general procedure presented above to 
establish the Hamiltonian structure of the well known Toda lattice hierarchy [7]. The 
same procedure has also been applied to recover the Hamiltonian structure of the 
Ablowitz-Ladik heirarchy [3], and to find new discrete integrable systems that will be 
reported elsewhere [ 111. 

We consider the isospectral problem (3.1) with the matrix 

U = U ( u ,  A )  = [:U A',] 

where 

U = (P, (4.2) 
is the field vector. As is easily seen, the spectral problem (3.1) with (4.1) is equivalent 
to the scalar spectral problem 

with 4 = ( E - ' y ,  Y ) ~ .  

zero-curvature equation (3.6). By (3.15) we can assume that 

( E + p + DE - ' ) y  = AY 

To derive the corresponding hierarchy we proceed first to solve the stationary 

It is easy to verify that 

Thus the equation (3.6) gives 
c = ob(') 

Ab'"=pb"'-(a'"+a) 

A ( u " ' -  U )  = (ob - u("b")) + p ( a " ' -  a).  
Substitution the expansions 

a =  anA-" b =  1 b,A-" C =  1 c,A-" 
n a o  n a o  n a O  

into (4.4a)-(4.4c), we obtain the recurrence relations 
c = - ~ b ( ' )  

b!,'Jl =pb'," - ( a y ' +  a,,) 
U,+, ( 1 '  -~ ,+ l=p(a ' , " - an )+(ubn  -o"'bk2') 

(4.4a) 

(4.4b) 
(4.4c) 

(4.5a) 
(4.56) 
(4.5 c) 
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where a:')= Ea,, b y ) =  E'b,, etc, as mentioned in section 2. To solve the above 
recurrence relations we have to introduce the rank to rule out the constant which 
appears when solving for a,+, from ( 4 . 5 ~ ) .  Taking into consideration the fact that 
p ( E )  = 0 and p (  U )  = 0,  as mentioned in the previous section, after some calculation 
we find that we could introduce the ranks as follows: 

P ( h l )  = P ( h 2 )  = -1 

P ( E )  = 0 P ( A )  = 1 

p ( a )  = 0 p ( b ) = - 1  P ( C )  = 1 

P ( P )  = 1 P ( V )  = 2 P ( 0 )  = 0 

P ( e )  = 0 P ( f  1 = -2 

where (Y = constant, and 

1 0  0 0  
h l = [ o  0] "=[o ,] e = [ ;  A] f=[; 3. 
Then 

p (  U )  = p ( ( e  + Ah2) - uf- ph2)  = 0 

p ( T ) = p ( a ( h , - h 2 ) + b e + c f ) = - 1  

p (  v) = p ( r  U- ' )  = -1  

and 

~ ( a , ) = p ( a , ~ - ~ ) - p ( ~ - " ) = p ( a ) + n p ( h ) =  n 

p (b , )  = p ( b ) +  n p ( h )  = n - 1 .  

The requirement p (  a,) = p (  b , )  = 0 forces us to take a, = constant, b, = constant, thus 
we can take the initial values as 

a()=i  bo = 0 b l = - l .  (4.7) 
1 

Starting from the above initial values and using the recurrence relations (4.5b) and 
(4.5c), we can easily calculate the first few a ,  and b, as follows: 

a ,  = o  a2= v a3 = u( p + p ( - l ' )  ( 4 . 8 ~ )  
a4= v(p2+pp(-,)+p(-1)2+ U(-')+ U +  J l ) )  (4.8b) 
a5 = u ( p 3 + p 2 p ( - l )  + p p ( - 1 ) 2  + p u ( - ~ )  + p ( ~ ) y ( ~ ) +  2up + p ( - 1 ) 3  + 2 v p ( - 1 )  

( 4 . 8 ~ )  

(4 .8d)  

(4.8e) 

+ v ( - l )  ( - 2 ) +  u(1)p(-1)+2v(-l) p ( - 1 )  +2v("p) P 
b2 = p ( - ' )  
b4= -(,p+2vp(-l)+2u(-1) P ( - I ) +  u ( - l )  P ( - 2 ) + p ( - l ) 3  1 

b, = -( v ( - l )  + v + p ( - 1 ) 2 )  

b 5 -  - ~ ( ~ u ~ ~ ~ ~ u + v ~ + v u ~ ~ ~ + v ~ ~ ~ ) u ~ ~ ~ ~ + y ~ - l ~ 2 + p ~ - l ~ 4  + up2 + 2pp'-''v + 3vp'-"* 

(4.8f 1 
It is worthwhile observing that the recurrence relation ( 4 . 5 ~ )  is not local in the 

sense that once we have calculated the expression A, = p(a'," - a,) + (ub, - u(')b!,')) 
we have to perform the integration D-' in order to find a,,, = D-IA,.  Thus only in 
the case that 

+3"-" ( - l ) 2 + 2 v ( - l )  ( - 1 )  ( - 2 ) +  & l )  ( - 2 1 2  P P P  P 1. 

p ( a y ' -  a,) + (vb,  - ~ ( " b v ) )  - O (4.9) 
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can we obtain a local expression for a,,,, i.e. an expression involving only a finite 
number of u ( j )  and p'". As we have seen above, equation (4.9) does hold for the first 
few n. We show in section 7 that (4.9) does hold for all n. In other words, the Toda 
hierarchy consists of local systems. 

Now we turn to searching for the corresponding hierarchy. By substituting ( A  "T) = 
(A"T)++(A"T)-  into (3.6) we find that 

(4.10) 

We observe that the left-hand side of (4.10) contains terms with powers A k ,  k 2 0 ,  
while the right-hand side contains terms with powers A k ,  k S 0. Therefore both sides 
of (4.10) contains only terms with A k l k = o .  In other words, the expression 

( E  ( A  T)+)  U - U (  A T)+ = U (  A 7 ' -  - ( E  ( A  T)-) U 

(E(A"T)+)U- U(A"T)+ 

is A independent. Thus 

( E ( A  T)+) U - U(A"T)+ 

= ( E ( A " T ) + ) U -  U(A"T)+/*,o 
= (ET,) U1 - UIT, 

(4.1 1 )  

where we have made the expansion 

(4.12) 

Following the same scheme that we proposed in [12] for generating continuous 
integrable systems, we search for a modification matrix A,, such that for some functions 
f, and g, it holds that 

(4.13) 

with V,,,, defined by (3.5). Once the matrix A, has been found, equation (3.4) would 
give the desired hierarchy. 

It is easy to verify that if A, = diag(a,, 0), then 

(4.14) 

Thus to cancel the matrix element -b!jl appearing in (4.11) we may set 

an = bncl. 

Then by (4.11), (4.13) and (4.14) we obtain the resulting hierarchy (3.4) as 

p f,, =f, =(u'"b' ,2'-ubn)+p(a, - U : ) )  

U,,, = g, 

(4.15~1) 

(4.1 5 6) 
By using the recurrence relations (4.5b) and ( 4 . 5 ~ )  we can rewrite the above hierarchy 
as 

( 4 . 1 6 ~ )  

(4.16 b )  

U(pb',"- a, - a : ) -  b , + I  ). 

p f , ,  = - (u( l '  n + 1 -  a,+,) 

Vf,, = u ( b Z 1  - k + I ) .  
This is the Toda hierarchy we are searching for. 
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The first few systems of this hierarchy can be obtained by using (4.8a)-(4.8f). The 
first system is 

or, = -U( p - p  ( -1 ) ) .  p r2 U )  

which is just the Toda lattice equation: 

dp( n) /dt  = v (  n )  - U( n + 1 )  

du(n)/dt  = u ( n ) ( p ( n  - 1)  - p ( n ) )  (d/dt  = d/dt2). 

The next two systems are as follows: 

p f 3 =  u ( ” p ‘ - ” ) -  u ( l ’ ( p ‘ ’ ’ + p )  

U,, = u ( ’ ) + p ( - ’ ) * -  P’) 
pt4 = U( p 2  + p p  + p ( - 1 ) 2 +  - U )  - u ( 1 ) ( p ( 1 ) 2 + p P ( 1 ) + p 2 +  p )  

u ( u p ( - 1 ) + 2 u ( - 1 )  P ( - I ) +  u ( - 1 1 p ( - 2 j + p ( - 1 ) 3 -  u ( 1 ) p ( l ) - 2 u ( 1 j p -  u p - p 3 ) ,  

Our next target is to write the Toda hierarchy ( 4 . 1 6 ~ )  and (4.16b) in its Hamiltonian 

(4.17) 

form. To this end we apply the following trace identity: 

( 6 / S u , ) (  V, U,) = ( A - Y ( d / a A ) A Y ) (  V, d U / d u , )  

where 

(A, B )  = Tr(AB) 

and y is a constant to be fixed and V is a solution of equation (3.9). The proof of 
the trace identity (4.17) will be given in the next section. 

By (3.8) we have 

v=ru-‘ 

Thus 

The trace identity (4.17) then gives 



39 14 Tu Gui-zhang 

Using (2 .5b)  and making an expansion, we obtain 

-- ab, + 1 - ( y - n ) ( - b !,' ) , :) . 
SU 

To fix the constant y, we simply set n = 1 in the above equation and obtain 

(-1,O) = ( - , - ) ( - p t - l ) )  S S  = ( y -  I]( -b@) = ( y - l ) ( l ,  0) s p  s v  V 

hence y = O  and we find 

with 
Hn = -bn+Jn.  

Next we search for a matrix J such that 

The matrix J satisfying the above condition is clearly given by 
0 ( 1  - E ) v  

which is easily seen to be a Hamiltonian operator. Therefore we have succeeded in 
writing the Toda hierarchy in the following Hamiltonian form: 

S H n  + 1 = J - .  
6U 

Furthermore, by a general result to be presented in the next section, we know that 

{ H n ,  Htn) = 0 
which shows that the Toda hierarchy consists of completely integrable discrete 
Hamiltonian systems. 

5. The trace identity 

We prove in this section the trace identity (4.17). 
Since in both the continuous case and the discrete case, the gradient of a functional 

is defined by the same equation (2.3), thus the technique 'constrained variational 
calculus (cvc)  [8] also applies to the present discrete case. The cvc technique is used 
to find the variational derivative SF( w)/ 6u under the constraint R( U, w )  = 0. The main 
steps of c v c  are as follows [8]. 
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(i) Firstly we introduce the ‘Lagrangian multiplier’ A, which is usually a matrix 
with the same dimension as the matrix RT, and form the sum 

CP- F+Tr(AR).  

(ii) Secondly we treat U and w as independent variables and set sa/ 6w = 0. 
(iii) Finally, treating U and w as independent variables again, we have 

where the notation s*/Su is used to mean that we calculate S@(u, w ) / 6 u  as if 
independent of U. 

w were 

To formulate the trace identity we need the notion of rank as explained in the 
previous section. 

Theorem 1 (trace identity). Suppose that the solution of equation (3.9) is unique in 
the sense that two solutions VI  and V, of the same rank differ only by a constant 
factor: V, = a V I ,  a = constant. Then it holds that 

where y is a constant and V is a solution of equation (3.9) which is of homogeneous 
rank. 

Proof: We apply the cvc  technique to calculate the variational derivative 

To this end we introduce the Lagrangian multiplier N x N matrix A and form the sum 

CP ( V, U,) + ( ( E  V )  ( E U )  - UV, A). 
That is, we take F = ( V, U,,), R = ( E V ) (  E U )  - UV, as mentioned in the above descrip- 
tion of the cvc  procedure. We have 

sCP 
O=-= U,,+U(E-’A)-AU. (5.2) s VT 

According to the cvc  procedure we then obtain 

6 8 
- ( V ,  uA)=-@ 
SU, Sui 

where we have made use of 

(5.3) 

s 
SU, 

=-(U, ( E - ’ A ) v )  

= (- au (E- ’A)V) .  
du i  ’ 
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Now setting G = (E-%) V - V A ,  we find on the one hand that 

( E G ) ( E U ) -  UG 

= A( EV)(  E U )  - ( E V ) (  E A)( E U )  - U (  E -'A) V + UVA 

= A UV - ( E V ) (  E A ) (  E U )  - U (  E-'A) V + ( E V ) (  E U ) A  using (3.8) 

= (AV - U ( E - ' ) )  V +  ( E V ) ( ( E U ) A -  ( E h ) ( E U ) )  

= U, V -  ( E V ) (  EUA ) using (5.2). ( 5.4) 

On the other hand, by differentiating both sides of equation (3.13) with respect to A, 
we find 

( E V ,  )( E U )  + ( E V ) (  EUA ) = U, V + UV,  

hence 

(EVA ) ( E U )  - UV,  = U, V - ( E V ) (  EUA ). 

From (5.4) and (5.5) we deduce that 

( E  ( G - VA ) ) ( E  U )  - U (  G - VA ) 0. 

(5.5) 

Thus we see that G -  V, is again a solution of (3.13). Since V / A  is clearly a solution 
of (3.13) and V / A  has the same rank as G-  V,, therefore by the supposition we have 

G -  VA = ( y / A ) V  (5.6) 
with y a constant. Substituting (5.6) into (5.3), we find 

The proof is completed. U 

Remark. It is worthwhile observing that the trace identity in the present discrete case 
takes completely the same form as in the continuous case [S-10, 13, 141. There are 
certainly some differences. The matrix V is different: in the continuous case the matrix 
V is supposed to be a solution of the equation V, = [ U, VI ,  while in the present discrete 
case the matrix V is taken to be a solution of the equation DT = [U,  VI .  Both the 
choices of V come from the common consideration that they are gradients. 

6. Liouville integrability 

In the continuous case we have established [ 151 an explicit formula for Poisson brackets 
by which we prove that under broad assumptions the hierarchies derived from isospec- 
tral problems consist of Liouville integrable Hamiltonian systems. As a consequence 
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of the Liouville integrability, the flows generated by different systems in the same 
hierarchy are always commutative. The aim of the present section is to do the same 
in the present discrete case. 

Following [15], we shall use the concise notation 

F t ( p ) =  FrnP-n 
n a o  

Fr(A; P ) =  C Frn(A)pL-" 
n 3 O  

where F is a matrix or scalar function. Thus we write, for example, 

Ur(A, P ) = C  Ur,,(A)p-n ( U i ) r ( P ) = C  ( U i ) r , / - - " *  

We have explained in section 3 the scheme for generating integrable systems related 

E+ = U+ ( 6 . 1 ~ )  
to an isospectral problem 

with 
U = eo + u1 e ,  + . . . + upep (6.lb) 

where ei = e i (A) ,  i = 0, 1, . . . , p are matrices belong to some matrix Lie algebra. The 
main idea of the scheme is to find a matrix 

such that 



3918 Tu Gui-zhang 

+ E A ( A ;  p ) U ( A ) -  U ( A ) A ( h ;  p ) .  

We need the following simple proposition. 

Proposition 2. Let V be a solution of equation (3.9) and U,=dU(A, u(T))/dT be 
defined by 

U , = ( E V ) U -  UV 

for some matrix Then 

( V ,  
= D(T, F) - 0 (mod D ) .  

Boo$ We have 

= ( V , ( E T ' ) U ) - ( V ,  UV)  

=(UV,  E V ) - ( V U ,  V) 
= ( ( E U ) ( E V ) ,  E V ) - (  VU, V )  
= D( VU, V) 
= D(r, Q-0.  

The proof is completed. 0 

Now we are in a position to formulate the main result of this paper as follows. 

Theorem 3. Let an isospectral problem be given by ( 6 . 1 ~ )  and (6.lb). Suppose that: 
(i) there exists a matrix A = A ( A ;  p )  such that the equation 
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holds for a set of scalar functions { A } ;  
(ii) there exist a Hamiltonian operator J such that the equation 

A"(( V,") , . . . ,  ( V,E))T=(f l , . .  . ,&)' 
8u1 3% 

holds for some integer k. 

isospectral problem ( 6 . 1 ~ )  and ( 6 . l b )  which takes the form (6.6), i.e. 
(a) (Generation of hierarchy) A hierarchy of equations can be related to the 

or equivalently 

(ui)rn = A n  i = 1 ,  . . . , p .  (6.10) 

(b) (Derivation of Hamiltonian structure) Equations (6.10) take the following 
Hamiltonian form: 

or equivalently 

where H ( A )  H,,A-" is defined by 

(6.11) 

(6.12) 

(6.13) 

(c) (Liouville integrability) Each equation in the hierarchy (6.1 1 )  is Liouville 
integrable and the set { H,,} constitutes the common set of infinitely many conserved 
quantities which are in involution in pairs: 

(d) (Formula for the Poisson bracket) Let H ( A )  be the generating function of { H " } ,  
then we have 

ProoJ The conclusion (a) has been drawn in the beginning of this section. The 
conclusion (b) can be easily derived from (6.6),  (6.7), (6.10) and the trace identity 
(5 .1 ) .  In fact the trace identity ( 5 . 1 )  can be decoupled into (6.13) and 

(6.15) 
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Since the conclusion (c) is an immediate consequence cf (d), it remains to prove 
(6.14). We have 

P k { H ( P ) ,  H(A)l 

by (6.5) and proposition 2 

= 0. 

The proof is completed. U 

We observe that the expression (6.14) for Poisson brackets takes essentially the 
same form as in the continuous case [15]. 

7. First integrals and the locality of discrete integrable systems 

In this section we show that the Toda hierarchy (4.16a) and (4.16b) consists of local 
systems. In other words, all a, and b, involves only a finite number of p ( i )  and ~ ( j ) .  

In fact, we show that all a, and b, are polynomials of p ( j )  and U('). 
We may recall that in the continuous case we have met similar phenomena: in spite 

of the fact that some recurrence relations are not local, their solutions are always local. 
We had suggested in [ 151 a 'locality lemma' to prove this phenomenon in many cases. 
The basic idea is to search for some first integrals of the stationary zero-curvature 
equation. In the continuous case the stationary zero-curvature equation is V, = [U, VI, 
it admits a number of integrals 

a, =Tr  V" 

for which we have (a,), = 0. When U is a 2 x 2 matrix, one integral a2 = Tr( V') would 
be sufficient to this end [ 151. We note that when V = a (h,  + h 2 )  + be + cf we have 

Tr( V') = -2 det( V) 

this first integral was also used by Schilling [2] to show locality. 
We show in the present discrete case that a similar result holds. 

Proposition 4. Let r be defined by equation (3.6). Then we have 

D(Tr(T")) = 0. 
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Proof: We have from (3.8) and (3.9) that 
r =  vu r(l)= uv 

D(Tr(Tn)) = Tr( r ( l )n )  -Tr(T") 
thus 

= Tr( ( U V ) " )  - Tr( ( V U ) " )  

= 0. 

The proof is completed. 0 

The following lemma shows that when U is a 2 x 2  matrix, one first integral 
a2=Tr(T2) would be sufficient to show the locality. 

Proposition 5. Let U be a 2 x 2 matrix and r be defined by (4.12). If bo ,  co are local, 
a, = a = constant # 0, and suppose that there is a set of recurrence relations 

where fl and f2 are two polynomials of ai, bi ,  c i ,  i n ,  and their translations, then all 
a,, b,, c, ( n  3 0) are local, that is they depend on a finite number of U ( ' ) ,  where U is 
the field variable contained in the matrix U. 

Proof: By proposition 4 we have 
a'+ bc = f Tr(T2) = y = constant. 

Thus 

The lemma is thus proved by induction on n based on the above equations (7.2) and 
(7.3). c1 

Corollary 6. The Toda heirarchy is local. 

We could expect that the same technique could be also applied to prove the locality 
of other discrete integrable systems, for example the system discussed by Bruschi and 
Ragnisco [ 161, where they made a similar conjecture on locality. 

In subsequent papers we shall apply the method developed here to discuss other 
integrable systems relating to a variety of discrete isospectral problems. 
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